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Received 8 March 2006; revised 9 May 2006
Available online 9 June 2006
Abstract

The spin-lattice relaxation dispersion may be probed in the laboratory frame through field-cycling NMR relaxometry. The experi-
ment, as usually done, has the basic weakness that the low frequency end of the measured dispersion can be blurred by the presence
of local fields. An understanding of the nature of such local fields was found to be essential to the interpretation of the dispersion profile.
In this work, an attempt was made to determine the extent to which specific information can be obtained from a rotating frame exper-
iment. The technique consists in the study of the NMR signal dispersion at a fixed spin-lock time, as a function of the radio frequency
field intensity. Within this scheme, a strong dispersion can be attributed to the presence of a non-zero magnetic field component along the
laboratory-frame Zeeman-axis in the rotating-frame. At on-resonance condition, this component is exclusively due to the presence of
local fields as projected on that axis.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Larmor frequency dependence of spin-lattice relaxa-
tion can be probed in the laboratory frame with the aid of
field-cycling nuclear magnetic resonance (NMR) relaxome-
try [1]. When studying materials with molecular organiza-
tion, the low-frequency end of the field-cycling relaxation
field window may overlap with residual local fields due to
non-averaged dipolar or quadrupolar couplings. In addi-
tion, eventually non-compensated magnetic fields from the
environment may be present. In these cases, the application
of a fully adiabatic cycle for the magnetic field becomes a
tricky task. While external magnetic fields can be compensat-
ed, the presence of local fields (LF) may impose limiting con-
ditions to the applicability of the technique [2,3]. It is
therefore desirable to understand all relevant mechanisms
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that would limit the application of the field-cycling tech-
nique. In particular, which would be the lowest Larmor fre-
quency allowing a correct interpretation of the measured
dispersion. In addressing this question we found that the
problem is essentially related to the nature of local fields.
Since, any attempt to investigate this point in the laboratory
frame will involve the cycling of the Zeeman magnetic field,
we decided to explore the alternative of the rotating frame.

In this paper, we describe a rotating frame technique
based on the observation of the detected magnetization
intensity after a fixed spin-lock time. The experiment allows
to estimate the LF flux density along the laboratory-frame
Zeeman-axis. In this context, we define the local field as the
sample average of the residual (time averaged over molecular
dynamics) value of the flux density in the position of a given
nuclear spin, due to all the contributions of other spins with-
in the molecule, averaged over all possible spin-positions
within the molecule. Since, the model is oriented to
mesomorphic phases, intermolecular contributions may be
assumed to be negligible due to molecular diffusion.
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This local field is associated in energy terms with residual
couplings of dipolar or quadrupolar nature.

In the Section 3, we describe details of the experiment.
Then, using a liquid sample with negligible local field, we
show that the technique can be used to determine the
z component (along the laboratory-frame Zeeman-axis)
of the magnetic flux density in the rotating frame due to
a preselected offset in the resonance frequency. Finally,
we use a similar approach, but on-resonance, to determine
the z component of the LF in a nematic phase. In order to
observe the temperature dependence of this value, the
experiment is considered at three different temperatures.

2. Theory

We define BLz as the LF component along the laborato-
ry-frame Zeeman-axis. For a nematic specimen, the in-
plane (x,y) component of the LF is assumed to be weak
due to fast molecular translational diffusion and rotations.
For the sake of clarity, in this section we provide a general
definition of LF.

The magnetic field generated by a magnetic moment m is
given by [4]

BðrÞ ¼ 3nðn �mÞ �m

r3
; ð1Þ

where n is a unit vector pointing along the position vector r. If
the moment m is due to a spin I oriented along the z-axis:

BðrÞ ¼ 3c�hI cos# sin# cos u
r3

iþ 3c�hI cos# sin# sin u
r3

j

þ c�hIð3 cos#2 � 1Þ
r3

k; ð2Þ

where r, #, and u are the spherical coordinates of r.
The projection of this field onto the z-axis is precisely

the z-component of the field (2)

BzðrÞ ¼
c�hIð3 cos#2 � 1Þ

r3
: ð3Þ

The 5CB molecule (4-pentyl-4 0-cyanobiphenyl) is constitut-
ed by 37 atoms (Fig. 1): 19 protons, 18 carbons, and a
nitrogen. Therefore, the magnetic field sensed by a proton
will be the sum of contributions of the 18 remaining pro-
tons, the 18 carbons, and of the nitrogen. Contributions
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Fig. 1. Schematic diagram of the 5CB mol
from nuclei pertaining to other molecules are neglected
due to the strong molecular mobility. Then, considering
that the protons and the carbons have I = 1/2 and the
nitrogen has I = 1, the field sensed by a proton at the posi-
tion rj belonging to the molecule m is
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where the bracket denotes averaging over time within the
time scale imposed by the experiment (ms). Since, we are
dealing with a low resolution experiment, the mean LF
we measure in the experiment is the average of dipolar
fields sensed by all the different protons in the sample.
Within the molecule m

Bm
z ¼

1

19

X19

j¼1

Bm
z ðrjÞ: ð5Þ

Averaging over the different N molecules:

BLz ¼
1

N

XN

m¼1

Bm
z :

Different possible molecular orientations are described by
an angle U, that is, the angle between molecular and Zee-
man frames [5]. To generalize, the sum may be replaced
by an integration, properly weighed by a function contain-
ing the orientational information (i.e., a function of U). In
this way, we include the information that the mesophase
may present a multidomain character. So the LF may be
expressed as

BLz ¼
1

19N

X19

j¼1

Z
BjðUÞP ðUÞdU; ð6Þ

where Bj (U) = B (rj (U)) is the field for a proton (j) located
in a molecule which has a probability P (U) of being orient-
ed with an angle U with respect to Zeeman field
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Fig. 2. The fixed lock-time experiment for the measurement of the z-
component of the LF. (A) Pulse sequence. (B) Effect of the p/2 pulse of
duration dt. During this pulse the B1 amplitude is much higher than the
LF. (C) After a lock-time T eff

2q , the magnetization will be projected along
the effective field.
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where gijðUÞ ¼ h3 cosð#m
ijÞ

2 � 1i with i = p, c, n. Finally
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The temperature dependence of the LF is contained within
the functions gij (U), Ærijæ and the probability P (U). This last
is strongly dependent on the molecular order (mesophase).
The LF is, in a certain extent, an indicative parameter of
the level of order of the molecular system at a given tem-
perature. The molecular motion in the isotropic phase
has a stochastic character, and no preferential orientational
order is present (unless pre-transitional effects are consid-
ered). As a consequence, there are no preferred values for
U, and the probability P (U) that a molecule is being orient-
ed with an angle U respect to the Zeeman axis is zero.
Therefore, there is not contribution to the local field. Un-
like this case, in the nematic phase the molecules are, on
average, aligned with their long axes parallel to each other.
The mean orientational field is macroscopically described
by the mesophase director, showing rotational symmetry.
This implies that there is a probability P (U) different from
zero in the neighbors of that direction. Within the meso-
phase, the internal molecular dynamics (group rotations,
flexional oscillations of the alkyl-chains, conformational
jumps, etc.) is temperature dependent. Such changes are
reflected through gij (U) and Ærijæ, which would tend to be
smaller at higher temperatures.

3. Experimental technique

The experiment consists in measuring the free induction
decay (FID) intensity after a given spin-lock time [6], at dif-
ferent lock radio frequency (RF) field B1 amplitudes (see
Fig. 2A). Due to the fact that nematic compounds in the
bulk do not show rotating frame spin-lattice relaxation
time (T1q) dispersion at high Zeeman fields [7], any change
in the FID amplitude as B1 is decreased can be attributed
to local fields [8].

The idea beyond the experiment is simple and can be
easily described in classical terms (four steps):

1. Fig. 2B represents the effect of the local field during the
p/2 RF pulse in the rotating frame. For simplicity, we
only show here the z component of the local field
(BLz). During the resonant p/2 pulse the amplitude of
the RF field B1 is much larger than the local field. As
a consequence, the effective field Beff is practically equal
to B1, and a time dt after the application of the pulse
(duration of the p/2 pulse) the magnetization will be in
the (x,y) plane of the rotating frame along the y

direction.
2. The amplitude of B1 is reduced and its phase changed by

90� to lock the magnetization (Fig. 2C). If now B1

becomes comparable to BLz, the direction and amplitude
of the effective field do not coincide any more with that
of B1. Moreover, as B1 tends to zero, the effective field
approaches the local field.

3. The magnetization originally along the y axis will pre-
cess around Beff. After a time T2q (transversal relaxation
time in the rotating-frame), only the component of the
magnetization along the effective field will survive. In
case the local field has a component in the (x,y) plane,
the only change respect the previous analysis is that
the effective field will not be contained in the (y,z) plane.



0 10 20 30 40 50 60 70
0,01

0,1

1

Doped water 300 K
 On resonance
 Off resonance

I S
 [a

u]

ν1 [kHz]

Fig. 3. Signal intensity as a function of the Larmor frequency in the
rotating frame m1 (fixed lock-time dispersions). Dispersions corresponds to
a water sample with adjusted T1. Open circles correspond to the on-
resonance case. Filled circles correspond to an off-resonance preset value
of 10 kHz.
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4. After a spin-lock time of at least T2q in a small B1, the
local component of the magnetization becomes reduced
in magnitude and pointing along a direction governed by
the local field.

If the molecular arrangement has some degree of disor-
der, the net magnetization will tend to zero as B1 is
decreased to zero. If the sample has a monocrystalline
order, the magnetization will also be reduced anyway as
B1 is decreased, unless the local field is uniformly aligned
with the y axis. Therefore, the technique also suggest a sim-
ple way to check about potential preferential directions of
the local fields by a simple repetition of the experiment with
a suitable four quadrant phase-cycling scheme.

In spite of common aspects, this experiment may be dis-
tinguished from the well-known adiabatic demagnetization
in the rotating frame (ADRF) [9], which uses modulation
of the Zeeman field or sweeping of the Larmor frequency.

3.1. First case: determination of the offset frequency in the

rotating frame: complete motional narrowed LF

As a test experiment, we confronted the well-known val-
ue of a preset offset frequency with the corresponding
determination obtained from the resulting FID intensity
dispersion. A water sample was used for this purpose. It
was slightly doped with copper sulphate (less than 0.1%)
in order to adjust its spin-lattice relaxation time (T1).

Case on-resonance. If we irradiate on-resonance, the
FID of an isotropic liquid sample after a fixed lock time
does not present a dependence with B1. Since, we are deal-
ing with a liquid sample, we may stick to the weak-collision
limit [10]. The spin-lattice relaxation rate in the rotating
frame can be written like [8]:

1

T 1q
¼ K

4
½J 0ð2x1Þ þ a�; ð9Þ

where K = (3/2)c4�h2I(I + 1) and x1 = cB1, being I = 1/2,
c the giromagnetic ratio of the nuclei and a a constant
depending on the molecular motions that are effective for
the involved spectral densities that are sensitive to the Lar-
mor frequency x0. There is no T�1

1q dispersion provided the
coefficients of the spectral densities and the spectral density
J0 do not depend on the frequency m1 = cB1 (nutation fre-
quency). Thus, being J0 (2x1) constant, 1/T1q should not
be dispersive for a liquid sample at the on-resonance
condition.

On these grounds, the FID intensity IS (proportional to
the projected magnetization into the (x,y) plane) should
not depend on the value of m1 at fixed lock time. However,
as can be observed in Fig. 3, there is a slight dispersive
slope showing a tendency to lower values of IS as B1

increases. This effect was observed at 20 MHz Larmor fre-
quency as well as 300 MHz. It does not depend on the sam-
ple nor on the temperature. In the present work, radiation
damping effects were measured to be irrelevant. It was ver-
ified that this decay responds to the functional form of a
cosine, inviting to suppose that an effective rotary satura-
tion takes place during the lock. This latter point will spur
more experimental and theoretical effort. Nevertheless,
within the context of the current matter, this apparent pit-
fall lacks relevance. The m1 frequency range of interest here
is exactly the opposed one, that is, where m1 values are less
than 40 kHz. In any case, a baseline correction due to this
effect was introduced in all data fitting.

Case off-resonance. In this case IS (m1) presents a notice-
able dispersion within the lowest end of the frequency
range (see Fig. 3). Now we have two new ingredients:

• The magnetization is locked at the effective field, outside
the (x,y) plane.

• Since we are off-resonance, the spectral density coeffi-
cients become frequency dependent.

The model needed to determine the offset frequency
should therefore be based on these two facts. In the follow-
ing we analyze the influence of each one on the observed
FID after the lock.

3.1.1. T eff
2q process. Projection of the magnetization into the

sensitive (x,y) plane

The effective field Beff in the rotating frame can be
defined as

Beff ¼ b0kþ B1i; ð10Þ
where b0 = B0 � xRF/c represents the off-resonance mag-
netic field, B0 = x0/c is the external magnetic flux density
defining the Larmor frequency and xRF is the frequency
of the RF field B1. Thus, the corresponding off-resonance
frequency can be expressed as

moff ¼
cB0 � xRF

2p
: ð11Þ
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After the p/2 pulse, the B1 field intensity is reduced and its
phase changed in 90�. Within this picture, due to the
presence of the off-resonance component, the magnetiza-
tion and the lock field in the rotating frame will not be par-
allel. Moreover, the magnetization will precess in a cone
around Beff. After a time T eff

2q , the remnant magnetization
becomes aligned with Beff, being its effective value M0cosh,
where h is defined as arctanðb0

B1
Þ and M0 represents the ini-

tial equilibrium Curie magnetization with the Zeeman
external magnetic field.

In analogy with T2 and T2q, the time T eff
2q is associated

with the loss of coherence of the spins precessing around
Beff. So after T eff

2q , the remaining magnetization is just the
projection of M0 along Beff. A second projection should
be considered due to the fact that the detection is associat-
ed with the sensitive (x,y) plane. Then, the detected inten-
sity is M0cos2h. This implies that

Mðm1Þ / cos2 arctan
moff

m1

� �� �
: ð12Þ
3.1.2. Effective spin-lattice relaxation in the rotating frame.

m1 dispersion

During a spin-lock experiment the magnetization
evolves according to the Bloch equations in the rotating
frame [11]. The solution of these equations gives [12]

MðsÞ ¼ ðM0 �M0eÞ expð�s=T eff
1q Þ þM0e; ð13Þ

where M (s) is the magnetization along Beff, M0 is the initial
spin-locked magnetization, s is the lock time and T eff

1q is the
spin-lattice relaxation time in the rotating frame at off-res-
onance conditions and M0e is the off-resonance equilibrium
magnetization that is given by [12]

M0e ¼ M0

T eff
1q

T 1

cosð/Þ; ð14Þ

where / = 90 � h and h ¼ arctanðmoff

m1
Þ.

At on-resonance condition, T eff
1q matches T1q.

However, at off resonance condition, the spectral
densities coefficients are frequency (m1) dependent [14].
Consequently, T eff

1q depends on m1, still in the case that
J0 does not [13]. The presence of spin-lattice relaxation
during the lock time results in a loss of magnetization
of dispersive character:

1

T eff
1q

¼ 1

T 1

1þ 3 sin2ð/Þ
2

� �
� K sin2ð/Þ

4
ð9J 2 � J 0Þ

¼ 1

T 1

þ 3

2T 1

� d
� �

sin2ð/Þ

¼ 1

T 1

þ 3

2T 1

� d
� �

cos2ðhÞ;

ð15Þ

where d = K/4(9J2 � J0) with K constant and J2, J0 spectral
densities. Then, the magnetization in the rotating frame
for a given lock-time s and off-resonance angle h is given
by:
Mðm1Þ ¼ M0 1�
T eff

1q cosð/Þ
T 1

" #
expðs=T eff

1q Þ þM0

T eff
1q cosð/Þ

T 1

¼ M0 1� sinðhÞ
1þ ð3=2� T 1dÞ cos2ðhÞ

� �

� exp �s
3

2T 1

� d
� �

cos2ðhÞ
� �

þM0

sinðhÞ
1þ ð3=2� T 1dÞ cos2ðhÞ : ð16Þ

Finally, from Eqs. (12), (16) and taking into account the
cosine base-line correction we get:
Mðhðm1ÞÞ ¼ A cosðcm1Þ cos2ðhÞ sinðhÞ
1þ ð3=2� T 1dÞ cos2ðhÞ

þ A cosðcm1Þ cos2ðhÞ exp �s
3

2T 1

� d
� �

cos2ðhÞ
� �

� 1� sinðhÞ
1þ ð3=2� T 1dÞ cos2ðhÞ

� �
: ð17Þ
This equation will be later used to extract the value of the
off-resonance component from data fitting.

3.2. Second case: determination of the local field in the

nematic phase

Now, we work at resonance condition. However, the
presence of the LF manifests as a non-zero local com-
ponent along the z axis of the rotating frame. From
this point of view, the problem is similar to the previ-
ous case: a liquid subjected to an off-resonance spin-
lock. However, important differences should be
considered:

• The magnetization will still be locked outside the sensi-
tive plane. However, in this case it is due to the presence
of the LF.

• As in the former case, a magnetization loss exists due to
spin-lattice relaxation. However, in this case the weak
collision limit is in conflict with locking conditions at
low B1.

• We have now two distinguishable reservoirs: Zeeman
and dipolar. At low values of B1, these two reservoirs
will be strongly coupled thus enabling a new relaxation
channel: cross relaxation.

In the following we analyze each in detail.

3.2.1. Locking in the presence of LF
Due to the presence of local field, after a time T2q the

equilibrium magnetization will be [10]

M eq ¼
M0 cosðhÞ

1þ BLz

Beff

� �2
: ð18Þ
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If the lock is produced on-resonance, we have

M eq ¼
M0

1þ ðBLz

B1
Þ2
; ð19Þ

where BLz represents the LF component along the Zeeman
axis. We note here that if the on-resonance locking field
B1 is large enough, the magnetization loss after a time
T2q is negligible. However, as B1 is decreased, an increasing
loss of magnetization takes place due to the presence of the
LF.

3.2.2. Loss of magnetization by relaxation

The possibility of strong energy exchange between the
Zeeman and LF (dipolar) reservoirs does not allow a direct
application of the weak collision theory. In this context, we
propose to adapt Ailion’s approach for solids in the strong
collision limit [9]. The two basic assumptions required by
the model are:

• The spin temperatures of Zeeman and dipolar systems are
equal; i.e., a cross relaxation time between both systems
TCR exists so that TCR 6 sc, being sc the correlation time
that characterizes the molecular reorientations.

• sc � x�1
0 . That is, before and after a molecular jump,

the spin orientation is preserved. Consequently, the
dipolar energy changes in a sudden form.

Under these suppositions, the spin-lattice relaxation time in
the rotating frame becomes:

1

T eff
1q

¼ 1

b2
0 þ B2

1 þ B2
Lz

b2
0

T a
þ B2

1

T b
þ B2

Lz

T D

� �
; ð20Þ

where Ta, Tb, and TD are longitudinal, transversal and
dipolar total relaxation times, respectively. TD includes
both contributions due to sudden molecular reorientations,
and other contributions or mechanisms that may contrib-
ute. In the above discussion we made the silent assumption
that the LF for a nematic mainly contributes along the
z-axis, as appears to be true experimentally.

If we are on-resonance b0 = 0, and (20) takes the form

1

T 1q
¼ 1

B2
1 þ B2

Lz

B2
1

T b
þ B2

Lz

T D

� �
: ð21Þ

The evolution of the magnetization in the rotating-frame as
a function of the spin-lock time (s), for a given off reso-
nance angle is given by

Mðm1Þ ¼ M eq �M eff
q0

h i
expð�s=T eff

1q Þ þM eff
q0 ; ð22Þ

where M eff
q0 is

M eff
q0 ¼

M0Beff b0=T a þ B2
Lz=ðB0T DÞ

� 	
b2

0

T a
þ B2

1

T b
þ B2

Lz

T D

: ð23Þ

Assuming B0T D � B2
Lz, the term B2

L=ðB0T DÞ in (23) can be
neglected. At the on-resonance condition, M eff

q0 can thus
be neglected, and (22) becomes
Mðm1Þ ¼ M eq expð�s=T 1qÞ; ð24Þ
where Meq is given by (19).

Finally, the evolution of the magnetization for an on-
resonance spin-lock in the presence of LF is

Mðm1Þ ¼
M0

1þ ðBLz

B1
Þ2

expð�s=T 1qÞ; ð25Þ

where T1q is given by the Eq. (21).

3.2.3. Cross relaxation

In the strong collision limit, Zeeman and dipolar sys-
tems are strongly coupled thus relaxing as a whole to the
lattice. In this case, the cross relaxation time satisfies the
condition TCR 6 sc. In the practise, we may assume that
in the limit where both reservoirs relax together,
TCR � 0. In this limit, Eq. (21) suggests that the effective
relaxation will be weighted by two contributions: Zeeman
(represented by Tb) and dipolar (governed by TD). On
the other extreme, when B1 surpasses several times the
local field, the cross relaxation process becomes ineffi-
cient and each reservoir will be characterized by an
own spin temperature. In this limit, we see from Eq.
(21) that T1q = Tb. Within this scheme, we assume that
TCR increases when increasing B1, and consequently,
Eq. (21) must be modified

1

T 1q
¼ 1

B2
1 þ B2

Lz

B2
1

T b
þ B2

Lz

T eff
D

� �
; ð26Þ

where now

T eff
D ¼ T CR þ T D ð27Þ

is the effective dipolar relaxation time as observed from the
Zeeman reservoir. If the cross relaxation is dominant
(strong collision), TCR � 0 and we recover the previous
equation. If the reservoirs are decoupled (large B1),
TCR� TD and the observed relaxation is of pure Zeeman
character.

To fit the described extreme situations, the cross relaxa-
tion time must satisfy:

• To be zero in the limit of zero B1 locking.
• To increase as B1 increases.

A Gaussian-type dependence is adopted for TCR, as it is
suggested in the literature for the case of solids [10]

T CR ¼ T D exp
B1

BLz

� �2
" #

� 1

" #
: ð28Þ

Finally,

T eff
D ¼ T D exp

B1

BLz

� �2
" #

: ð29Þ
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Fig. 4. Fixed lock-time dispersions of the nematic phase of 5CB
corresponding to Tb = 100 ms. (A) 298 K. (B) 302 K. (C) 306 K.
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Replacing TD by T eff
D in (21) we get

Mðm1Þ ¼
M0

1þ ðBLz

B1
Þ2

exp
�s

B2
1 þ B2

Lz

B2
1

T b
þ B2

Lz

T D expðð B1

BLz
Þ2Þ

" #" #
:

ð30Þ

This last equation describes the dependence of the locked
magnetization on the radio-frequency intensity.

4. Experimental

The intensity of the FID signal was measured as a func-
tion of the lock field amplitude B1 at at fixed lock-time s. In
the first case (doped water) the experiment was done at a
well-known off-resonance, while in the second case the
experiment was made on- resonance. The covered frequen-
cy band was from 6 kHz up to 65 kHz. The lock-time was
fixed to 5 ms. The p/2 pulse length was 2 ls. The working
Larmor frequency was 19.181 MHz.

The spin-lattice relaxation time T1 was measured by
using the standard p/2 � p/2 saturation recovery pulse
sequence.

The apparatus is based on a Stelar Spinmaster console
and a Bruker BE10 electromagnet. The probe was adapted
to a Kalmus LP-1000 power transmitter. Sample tempera-
ture was directly measured in the sample volume within
±1 K with a CHY 503 digital thermometer. It was verified
that for a fixed lock-time of 5 ms and a recycle delay of 5 s
(time between spin-lock pulses), the B1 amplitude can be
increased up to 70 kHz with a sample temperature incre-
ment of less than 1 K. Sample temperature was controlled
by air flux and a home-made controller.

Fig. 3 shows data corresponding to the first case: liquid
sample. Doped water was prepared to have T1 = (26 ± 1)
ms. Measurements were performed at an off-resonance of
10 kHz. Data fitting was done with only two free parame-
ters: moff and d = K/4(9J2 � J0) (see Eq. (17)). The constant
c corresponds to the cosine base-line correction and was
determined from the on-resonance dispersion:
c = 0.01 kHz�1. Since the FID amplitude was normalized,
A was fixed to be 1. Table 1 shows the obtained values from
data fitting corresponding to a preset offset of 10 kHz.

The experiment was also done for a T1 = (168 ± 8) ms
doped water. It was verified that the measured offset does
not depend on T1. From the table we see that, within exper-
imental errors, the measured offset is indistinguishable
from the preset value.

LF measurements were done in the nematic phase of
5CB. Experiments were performed at three different tem-
peratures: 298 K (Fig. 4A), 302 K (Fig. 4B), and 306 K
Table 1
Determination of the offset field from data fitting using Eq. (17)

Offset (kHz) moff (kHz) d (ms�1)

Water T1 = (26 ± 1) ms
10 9.8 ± 0.3 0.135 ± 0.002
(Fig. 4C). The fitting function corresponds to Eq. (30).
The two free parameters are BLz and TD. The relaxation
time Tb was considered constant and of the order of the
relaxation time corresponding to values of B1 between 40
and 50 kHz. Due to intrinsic problems related to the stan-
dard T1q experiment, this time was not measured accurate-
ly. However, its value is estimated to be between 100 and
200 ms. To overcome this limitation and to test the rele-
vance of this parameter, fittings were done for both cases.
As can be seen in Table 2, the impact of Tb in the results
is relatively low.

From the table it can be clearly observed that the z-com-
ponent of the LF tends to increase as the temperature is
lowered. In addition, within experimental errors, we see
that TD is sensitive to a temperature change. However this
parameter is mainly related to the efficiency of the coupling
between Zeeman and dipolar reservoirs, which in turn
strongly depends on the B1 intensity.



Table 2
Results for 5CB at different temperatures for two extreme values of Tb

Tb (ms) BLz (kHz) TD (ms)

5CB T = (298 ± 1) K
100 3.8 ± 0.1 0.028 ± 0.009
200 3.94 ± 0.09 0.038 ± 0.009

5CB T = (302 ± 1) K
100 3.2 ± 0.1 0.011 ± 0.006
200 3.4 ± 0.1 0.017 ± 0.006

5CB T = (306 ± 1) K
100 3.2 ± 0.1 0.021 ± 0.009
200 3.4 ± 0.1 0.031 ± 0.009

It can be observed that within fitting errors, results are not dependent
upon the value of Tb in the range from 100 to 200 ms.
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5. Conclusions

We have discussed a fixed-time spin-lock rotating frame
relaxometry technique. The present experiment was
undertaken in order to investigate basic features of LF at
low-resolution NMR. The z-component of the LF was
determined through a simple theoretical approach.

Obtained values of LF in 5CB are in fine agreement to
values of similar parameters determined by other authors
in the same and similar compounds by means of other
methods. Heteronuclear multiple quantum (HMQ) NMR
and local field spectroscopy were used to investigate car-
bon–proton interactions in liquid crystal molecules [15].
Average dipolar couplings of this sort in 5CB up to
4656 Hz were measured using static proton detected local
field spectroscopy (PDLF). In combination with off-magic
angle spinning (OMAS), this value showed a reduction to
3473 Hz [16]. Proton encoded local field spectroscopy
(PELF) in combination with OMAS were also used in a
similar compound (4-cyanobiphenyl hexanoate) obtaining
carbon–proton couplings between 52 Hz (for long range
interactions) and 5285 Hz (local interactions) [17]. By using
proton and deuteron NMR spectroscopy of partially deu-
terated 5CB (5CB-d15), proton–proton dipolar couplings
up to 3919 Hz were found within the molecular core. In
this approach the authors simplify the proton spectrum
by replacing some protons by deuterons followed by deu-
teron decoupling [18]. Values of proton–proton dipolar
couplings in 5CB around 4000 Hz were obtained by com-
putational calculations [19]. The aforementioned high field
NMR techniques are very sensitive to local interactions,
allowing to identify different homonuclear and heteronu-
clear interacting pairs. In our case, we measure a non-local-
ized averaged value including both homo and all
heteronuclear interactions. Our experiment is much like
the practical situation we have when dealing with field-cy-
cling NMR at low-fields, specially due to the unavoidable
strong coupling between the Zeeman and dipolar systems.
That is, with the proposed method, we may have a good
approximation of the averaged local field sensed in the lab-
oratory frame, i.e., at field-cycling conditions. However,
even when the aim of use of these high field techniques
are different from our present approach, results should be
consistent.

The existence of cross relaxation in solids was discussed
in detail in the decades of 60 and 70 [9,10]. In liquid crys-
tals, it was recently invoked in the context of pulsed spin-
lock experiments by other members of our group [20]. In
this work we proposed a Gaussian-type dependence for
the cross relaxation mechanism, in close analogy with the
case of solids.

A key aspect of the present study was the extension of
Ailion’s model for a nematic phase. In this context, the
raised question concerns how far the assumptions of the
model are satisfied: Zeeman and dipolar reservoirs strongly
coupled and, sudden jumps in the dynamics of the system.
There is no doubt that when the value of B1 becomes com-
parable or smaller than the LF, both Zeeman and dipolar
systems couples. As far as a non-zero LF exists, there is no
difference from a solid in this aspect.

As B1 increases, the cross relaxation becomes less effi-
cient until a point where both reservoirs can be considered
decoupled. In that limit, the model predicts that in such a
case the value of T1q tends to a constant value Tb. Starting
from the opposed frequency end of the measured interval,
that is, from a B1 value much greater than the LF, T1q may
be described by the semiclassical approach in the weak col-
lision limit. As far as B1 increases over the LF value, both
approaches tends to a constant non-dispersive value of T1q.
To deal with this apparent conflict, we amalgamated both
approaches by the inclusion of a cross relaxation time that
controls the passage from one end to the other.

Another feature of the aforementioned model concerns
to the molecular dynamics. Although nematic liquid crys-
tals are characterized by cooperative movements, these
are not contributing for the spin-lattice relaxation in the
rotating frame [8]. Other stochastic processes like molecu-
lar reorientations, group rotations, conformational chang-
es, and diffusively translational jumps occur within a broad
time scale defined by the corresponding correlation times.
Most of these processes may happen in sudden form,
whereas the rank of associated correlation times goes from
the ps to tens of ms (al least) time scale. Those jumps asso-
ciated to longer correlation times will be the main contrib-
utors in the strong collision limit. Faster processes also
contribute through TD and Tb [9]. Under strong Zeeman-
dipolar coupling condition, the cross relaxation time in
our experiment resulted of the order of the 100 ls. Conse-
quently, we may assume the existence of a large spectrum
of dynamic processes fitting to the strong collision regime.
Within this category, those slow and weakly correlated
motions will be dominant. In the other extreme, fast
stochastic processes will fit with the weak collision limit.
In this case, the contribution of slow motions with large
correlation time becomes less effective (as far as jumps in
the dipolar energy cannot be communicated to the Zeeman
reservoir through the cross relaxation mechanism). In
between, we may think in a complex mixture of both
approaches (this is possible as far as we consider the
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coexistence of fast and slow stochastic processes). Never-
theless, a deep description and a detailed formalism is out-
side the scope of this paper.

A word of caution should be focused in a possible com-
parison of the proposed method with the traditional T1q

experiment. In this last case, the magnetization is acquired
for different lock-times at a fixed B1. One important prob-
lem in this approach is that the temperature of the sample
cannot be held constant throughout the measurement. In
particular, this statement holds valid for standard nematic
compounds showing T1q values longer than 100 ms. This is
mainly due to dielectric heating produced by the RF field at
high B1 amplitudes, and to joule heating of the coil. Sample
temperature increases with the lock-time. Since, dielectric
heating is strongly dependent on the frequency of the RF
field, rotating frame experiments are better done at low
Larmor frequencies. The problem becomes serious for val-
ues of B1 over 20 kHz, specially if the value of the T1q to be
measured is over 100 ms. Although the duty cycle is
reduced, the problem is also present in pulsed spin-lock
experiments. From this point of view, the salient character-
istics of the proposed method relays in the fixed lock-time.
This can be adjusted according to the maximum B1 to be
scanned while avoiding a relevant sample heating.

Finally, we would like to stress that we found a strong
correlation between the obtained values and the corre-
sponding Larmor frequencies at which the field-cycling
relaxation dispersion becomes sensitive to local fields.
The subject is still under active study. A detailed analysis
will be presented elsewhere.
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